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Abstract 
 

An intentional form of the semantics of algebraic expressions in the tradition starting with Frege is popular in 

mathematics education. On the other hand, mathematical logic including predicate calculus and lambda calculus 

is dominated for more than 50 years by referential semantics. A third field of investigation is the semantics of 

mathematics as realized in programming languages and computer algebra systems. The paper explores the 

tension between these approaches and tries to clarify the role of reference both in he developed mathematics as 

well as in the learning process. Referential semantics simplifies theories but requires mental objects to be 

constructed to be useful. This links the topic to reification theory. A small collection of observations of learners’ 

behavior adds support to the claim that reference is of some importance in the learning process. 
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Introduction 

 

The semantics of logic has been a subject of change for a long time. At least for mainstream mathematics this 

process has reached a stable state with the works especially of Tarski. Predicate calculus together with set theory 

has shown to be a powerful combination that fulfills the needs of mathematicians and moreover of computer 

scientists. In the present paper we investigate the fundamental role of reference in this theory of the semantics of 

logic language. A brief outline of this is described in section 1.  Yet, in mathematics education it is more 

common to refer to the older semantical theory by Frege. Notably Arzarello et al. (1994, 2001) have dealt with 

this in detail and came to the conclusion that his intentional semantics is well suited for education (section 2). 

On the other hand, the modern referential view of logic has advantages in giving a short and concise description 

of the formal background of mathematics (section 3,4), but may be dangerous as model for what students should 

be presented (section 3). Hence, the central question that should be clarified is the relation between 

understanding and reference (section 5). We collect some simple observations that might help in giving an 

answer to this question (section 6), but find that further research is needed to clarify the situation.   

 

 

Predicate Calculus, Lambda Calculus 

 
The notion of reference plays a central role in modern formal mathematics (see e.g. Li 2010). In predicate 

calculus, formulae are build up from symbols for variables, functions and predicates, logical conjunctions (not, 

and, or, implication, …) and quantifiers (for all, exists). The well-formed formulae are described on a purely 

syntactical level. Meaning is given to them by fixing an interpretation that consists of a domain and an 

assignment of a value from this set to every free variable in a formulae and of functions and predicates over this 

domain for every predicate and function symbol that arises in this formula. Focusing on variables, an 

interpretation is thus a set of references from variables to the domain of the theory. If a formula is true for some, 

all or none interpretations applied to it, it is called satisfiable, tautology, or contradictory, respectively. The role 

of variables is to refer to objects from the domain. All variables are equal, but they may play different roles, 

depending on the quantifiers applied to them. But even then their function is to refer to an object. 

 

Note that in each interpretation, the variable is assigned a unique object that is fixed in the interpretation. One 

may write this assignment as  (here  is a variable (i.e. a part of the logical meta-language) and  is an 

object of the domain). An interpretation consists of exactly one such assignment for each variable. Evaluating if 
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a formula is true or false in a given interpretation amounts to applying all these assignments as substitution rules 

and then checking in the domain if a statement is true. In general we use the term evaluation (w.r.t an 

interpretation) for the process of determining the object of the domain that an expression refers to. 

 

Note that understanding change on the level of this formal language requires either the introduction of two 

variables to capture initial and final states or that of a function of formalized time, or, on the Meta level - the 

consideration of many interpretations. 

 

Of course, this whole story only makes sense if the domain is well-understood. A prototypical example is 

arithmetic, where an axiom system assures that only domains are possible that are isomorphic to the standard set 

of integers. To work successfully in this logic theory one has to understand this set of integers, i.e. one needs to 

be able to decide the truth of predicates (such as 3|12) over this set. What the logic adds to purely having the 

integers as mental objects is the ability to make general statements over this set.        

 

We conclude with a short look at lambda calculus which is an equivalent logical system that is essentially suited 

for understanding computation (Michaelson 2011). It is so to say the calculus of pure functions and used e.g. as 

a theoretical basis of functional programming languages. Variables appear as parameters of functions. Their role 

is to refer to the input given to the function. This short description is enough for our purpose as we need only the 

conclusion that with regard to variables, both logic systems, predicate and lambda calculus, don't differ much: 

Variables refer to something. 

 

 

Semantics based on Frege 
 

Arzarello et al. (1994) and many mathematics education researchers in the sequel work with an intensional 

semantics of algebraic expressions that derives from Frege's theory. Especially they draw on Freges distinction 

between sense and denotation (Frege used the German word 'Bedeutung', but it would be misleading to translate 

this as 'meaning', and most translators avoid this). His most cited example is that of the expressions 'venus', 

'morning star' and 'evening star'. They have, according to Frege, the same denotation (i.e. they refer to the same 

object) but their sense (i.e. all the connotation these expressions may have for you) is different. Thus, when 

evaluating an expression using a replacement we may lose some information (namely the sense of a) 

when substitution b for a. 

 

Now, we focus on the application of this to understand the use of the algebraic language. In the words of 

Arzarello who develops Frege's theory into more detail, one may say that the expressions n(n+1) and n
2
+n have 

 

1. the same denotation (or the same reference), namely a function in n   

2. different algebraic senses, i.e. one is expanded, the other factored. The algebraic sense “represents the 

very way by which the denoted is obtained by means of computational rules”. 

3. different contextual senses, e.g. the first may have the sense of the area of a class of rectangles or it 

may be the product of consecutive integers. 

 

This distinction is appealing because it can be used to explain certain problems of students, e.g. as being the 

result of students mixing up these levels or neglecting one. 

 

Interestingly, the denotation, which might seem to be the easiest to characterize, proves to be delicate and is 

handled differently by authors who base their presentation seemingly on the same theoretical grounds. First note 

that there is some arbitrary choice made: One might have expected n·(n+1) or n
2
+n to be a polynomials in n 

rather than functions. However,  (Arzarello et al 1994, p. 110) says that functions are denoted:  “For example, 

the expressions 4x + 2 and 2· (2x + 1) express different rules (senses) but denote the same function.” Taking the 

denotation as functions may not be what one wants and on the next page they state “The denotation of a 

symbolic expression in algebra is the numerical set, possibly empty, which is represented by the expression 

itself.” In this understanding, the denotation (when working over the reals) of n· (n+1) and n
2
+n would be the 

semi-open interval . Moreover, following this line of thought one has to say that x and x+1 have the 

same denotation when working over the integers or reals (but different denotations over the natural numbers). 

 

The problems to define denotation in a coherent fashion seem to be rooted deeply in Frege's theory. We 

continue to explore these difficulties by focusing on the somewhat different presentation given by Drouhard & 

Teppo (2004) that draws on Frege as well. They put out, consistent with Arzarello et al. in the first of his 
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explanations of denotation) the interpretation that 2·x+2 denotes a function  and that 2· (x+1) denotes the 

same function (although they differ in sense). Furthermore, 2·x+2=1-x denotes a function from numbers to 

Boolean values .   

 

There are two severe problems with this approach: 

First problem: Because 4+1 and 3+2 denote the same number, one may replace one for the other without 

affecting the truth of sentences, e.g. „4+1 is a prime“ will stay true after the substitution. On the other hand, the 

statement „n(n+1) is a factored polynomial“ will become false upon replacing the expression by n
2
+n. Thus, 

following Frege's intentional semantics, we must say that the truth of statements is not affected alone by what 

objects expressions refer to, but also what sense they are attributed. This is problematic, because 'sense' is a 

notion that is in itself not clearly defined. Thus, doing substitutions is a dangerous operation that requires deep 

analysis each time it is to be carried out – although it is a very frequent operation in mathematics. Quine (1960) 

has analyzed such situations and called them opaque contexts – which should be warning enough to chase 

students in this direction of thinking. 

 

Second problem: Algebraic language is context free in the following sense of formal languages (i.e. context is 

not meant to be a real world context): The rules of the language apply to sub-expressions independent of their 

position in larger expressions, e.g. is you know that a+b equals b+a then you may replace one of these 

expressions with the other, independent of its position in some larger expression. And if you know that n refers 

to a number, then in n+1 the n refers to a number as well. This context freeness obviously simplifies a language 

very much and is reflected nicely in the view that algebraic expressions are trees where each leaf is a tree in 

itself that can be arbitrarily complex. In the Frege tradition, however, we are told that x+1 and 2·x-1 are both 

functions R→R and these functions are different, so that we must conclude that x+1=2·x-1 is a false statement 

because the objects on both sides of the equal sign differ. To overcome this, and allow for equations to be solved 

for unknowns, Frege followers must scarify context-freeness. They have to claim (and Drouhard&Teppo do this 

explicitly), that in  x+1=2·x-1  the part x+1 does not reference a function, rather as a part, it references nothing, 

but the whole refers to a function to the Boolean values. Thus, students can't learn one simple rule of what x+1 

refers to, but they have to ask in each new context, what sense it has there. Thus they are urged to ask the 

question, Am I allowed to do this here?”.   

 

To summarize: Taking Frege's intensional semantics as a basis of algebra gives the vague but useful notion of 

sense but comes at the cost of leaving denotation unclear and seemingly precise statements are bound to use the 

vague notion of sense as well.    

 

 

Reference for simplicity!? 
 

Within logic and moreover lambda calculus, many programming languages and so forth it has been realized that 

the complexity of the semantics of formal systems is reduced and streamlined if you assume that all symbols 

refer to something in a unique way. This does not only apply to variables for objects from the domain but also 

for function and predicate symbols. For example, one may hold the view that (depending on the domain) the 

equal sign = is not just a syntactical mean like parentheses but refers to something, namely a function from 

 
 
to the set {true, false}. This point of view is very clearly articulated in one of the programming language 

with the slimmest yet most powerful semantics, namely Scheme (Abelson et al. 1998). In this language the 

equal predicate that the sign = refers to can handled like any other object (e.g. stored somewhere, passed as 

parameter).  To be more precise, entering an expression in this language gives its evaluated value, e.g. entering 

5 gives 5 and entering (+ 5 2) gives 7. After (define a 3) we have that (+ a 1) gives 4. The 

interesting thing is that entering  = gives a procedure, e.g. in the racket implementation this prints out as 

#<procedure:=>. The symbol = is just a name. A standard name that comes defined in the initial 

environment while a in the example above was a name introduced by the user. Thus even the equal predicate 

(and as well operations such as +) are used in the same referential setup: These are symbols that refer to a 

procedure. However, not every part of the language has a reference – a single ( does not have. Nevertheless, 

this approach greatly simplifies things: Symbols refer to something and that’s the value used upon evaluation.      

 

So, a consequence could be to set out the goal to base school mathematics on such a simple and consistent 

referential semantics that is successful in a vast variety of areas. Every symbol used is then to be understood as a 

reference to some object and the logic of quantifiers on them may set students in the position to master all 

mathematical questions in a consistent, simple semantics system. 
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However, although logically consistent, such an attempt could very easily prove to fail. Its simplicity draws on 

the following facts that are given for most adult users and creators of mathematics but seem very questionable 

when looking at learners: 

 

1. The domain of objects S needs to be clearly understood. As a quantification „for all x in S we have ….“ 

needs an overview of what the elements of S are. Yet learners may not have constructed the objects 

mentally as their own objects, and even if they have constructed some or all of them, it may turn out 

that the learner is still missing the overview of this domain. 

2. Even if the domain of objects is mastered, it may be the case that 

functions on this domain are not yet constructed as mental objects, e.g. the learner may still have the 

process view without having it reified yet. E.g. it may be that learners can use the definition f(x)=2·x+1 

of a function N→N to calculate function values, but they may fail to see f as an object. Especially they 

may fail to see that the part f of these expressions refers to something. That learners often accept or 

produce such writings as f(x)=n+1 (thus not linking the variable in both sides of the equation) shows 

that they view this more like a ritualized way to express a calculation procedure than as an expression 

composed of parts that have individual meaning by their reference to some objects. 

 

So, from his considerations it is not yet clear, what the relevance of reference is, expect that is desirable. We 

will explore some more aspects before trying to put bits together. 

 

 

Technology: Computer algebra systems 
 

The last section has already alluded to a connection to technology and this will be addressed in more detail in 

this section. When you enter an expression in a computer algebra system (see e.g. Davenport 1988) it builds up 

a certain structure in the computer's memory that we call an object (it may be a number, a list, a polynomial or 

some other thing). If one assigns the expression to a variable, then the variable refers to it and in evaluation will 

henceforth give this object. Thus, we have a referential structure as the working model of such a system. 

However, it would be absolutely infeasible to have objects used in the way suggested by Frege's theory. Instead, 

for all modern systems the expression n· (n+1) and n
2
+n  denote two different objects. Thus, sticking with 

Frege's theory would mean to explain students, that these expressions denote the same objects, but that the CAS 

does treat them as different. Or, put differently, it hinders students in synchronizing their mathematical objects 

and operations with that of the system, and as a result they are not able to learn from the system as a model of 

correct mathematical behavior. The only way out would be to say that the CAS deals with the sense of the 

expression, not with its denotation. But certainly, a computer can't work with the contextualized sense, at best 

with the algebraic sense. This notion is left a bit vague by Arzarello and Drouhard, at least it seems to be not so 

clearly defined as to become a criterion for checking if a computer algebra system works correctly. For example, 

one may ask if 1 seen as a number and 1 seen as a constant polynomial have different algebraic sense – if so, it 

can't be detected by standard computer algebra systems (although, there are strongly typed systems that make 

this distinction). To say that CAS works with algebraic sense would then require to say that the algebraic sense 

is identical. The same applies to examples such as 1+x as being either a polynomial or a rational function with 

unit denominator. One of the explanations Arzarello et al. give is that “it represents the very way by which the 

denoted is obtained by means of computational rules.“. But as most CAS treat x+y and y+x as identical objects 

they can't represent the difference of the algebraic sense between these two writings. I think that the only 

definition of algebraic sense that is compatible with the use of computer algebra would boil down to say that 

two expressions have the same algebraic sense if they are represented in the CAS by the same object. But this 

would eliminate the need for sense as it replaces it with denotation. 

 

Given these problems, I suggest that the easiest way to deal with the problems is to adopt for mathematics in 

general the way algebraic objects are dealt with in computer algebra systems. This is not to be mistaken as 

saying that technical decisions of computer algebra makers should have normative power for teaching 

mathematics. In the contrary, the science of computer algebra systems has established, that the best way to build 

such systems is to stick close to the ideas of formal mathematics such as predicate and lambda calculus. Thus, 

supporting a completely different view of mathematical objects would mean to increase the distance between 

school mathematics on one side and logic, mathematics and computer algebra on the other side at the same time. 

 

To summarize the joint result of the last three sections: We propose that writings of compound signs such as 

2∙x+1 or 2∙x+1=3∙x refer to mathematical objects which are expressions. Thus, besides standard domains like 

integers, rationals and polynomials we also consider expressions as a valid domain in predicate calculus. These 

expressions may – if needed – further be mapped to specific domains such as polynomials, rational functions 
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etc. but as they are created by writing them down 2∙(x+1) and 2∙x+2 denote different objects. By mapping them 

to specific other domains, such as polynomials, different expression objects may be mapped to the same 

polynomial object. This allows for a fine grained understanding of identity.  In the large domain of expressions 

we can attribute properties like 'expanded' to these objects rather than to have the need to speak about the vague 

notion of sense. This is a consistent and clear referential view of mathematics, compatible with mathematical 

logic and computer algebra systems. Yet, it has to be discussed, if this view is adequate for learners of 

mathematics. There are some subtle points to be clarified but first let's look at an observation that illustrates that 

thinking about expressions may be rather close to students intuitive conceptions: 

 

For instance, a child asked by an interviewer to write down the length of a space-ship's path composed 

of y 1l-light-years long segments said: "What, shall I write what I would do?"; and after she eventually 

contrived the formula 11·y, she exclaimed to the interviewer: "What, is that all it was? Why didn't you 

say so? I thought you wanted an answer." Thus, for this child the expression was a mere prescription 

for the sought-for quantity, not the quantity itself. (Sfard&Linchevsky 1994, p. 207) 

 

This shows that this student feels comfortable with 11·y as an expression but struggles with Frege's view that 

this denotes a number. 

 

 

Understanding by form and by reference 

 
As explained above, modern logic and mathematical software and programming language are extensively based 

on the idea of reference. When a new mathematical subject is created, researchers define their new domain of 

objects to be able to use the referential semantics of logic. The assumption that such objects exists at least 

relatively to some frame (ontological commitment in the language of Quine (1960)) is the first step in doing 

mathematics. As mentioned at the end of section 3, this view may not be adequate for learners who have not yet 

constructed the mental objects that variables should refer to. Consider, as an example, functions. There are 

various theories that describe the learning process of functions. One theory that is prominent in Germany is the 

theory by Vollrath who describes four steps in the learning of the function concept. Only the last one considers 

function as objects. A three step theory by DeMarois (1998) similarly puts functions objects on the highest 

layer.  So, if these theories are correct, there must be a way for students to gain meaning other than the 

referential semantics of developed mathematics. How this way may look like is a difficult question.  Besides by 

Frege, non-referential theories were influenced by Wittgenstein's language games. This is certainly attractive for 

natural languages, but the approach lacks the rigor needed for formalized proofs. For the purpose of 

understanding learning however, it may be quite adequate. One may say, e.g., that students learn the rule that 

after f(x) one puts the rule of some calculation, or they may view the vector analytic description of a line 

 as a ritualized way to give a point on a line and the direction of a line without seeing any referential 

meaning (of x standing for a vector to a point on the line or of seeing the whole as a logical statement with free 

variables that can be used, e.g. to substitute a vector for x and determine if there is a solution for t, i.e. if the 

point is on the line.). Such language games allow processes to take place and thus they form the basis of 

reification and the creation of mental objects that can then serve as the basis for referential understanding. The 

roles of diagrams in thinking can also be understood from this purpose. In (Oldenburg 2011) we put out the 

thesis that the inscriptions used by some programming languages are ideally suited to support the creation of 

mental objects. The diagrams are thus means to provide objects. 

 

This gives a perspective on what might be a sensible didactical approach: Language games may be good starting 

points for the novice but ideally they are structured in a way to ease the creation of mental objects and form the 

domain of a referential understanding. The various forms of process-object theories such as reification theory 

(Sfard&Linchevski 1994) and procept theory (Tall 2012) may inform on how this object creation may take 

place. So the conclusion of this very sketchy paragraph is that successful learning is likely to happen if it is 

geared towards the creation of mental objects.   

 

 

Then, how important is reference really for understanding? 
 

Here we collect some hints, that reference is an important key in student's use of algebraic formalism. The first 

observation here is one from Meyer (2013). He led 11th grade students solve a problem of a number triangle, 

which is a complex arrangement of 7 numbers obeying several rules like that the sum of two adjacent numbers 

must be the number in a neighboring field. The details are not important, but it is of interest to look at the 



59 
 

IJCER (International Journal of Contemporary Educational Research) 

transcript (which was found to be interesting by Meyer for completely other reasons) and ask what activities 

triggered the use of a symbolic variable as a problem solving tool. The student Frank interacts with another 

student and they talk a lot about numbers, experiment and try out, but they never use any algebraic concept. 

Then the interesting break in thought happens: 

Frank: “...This is two times 7, basically (writes 2∙7 above the number triangle). And here we have one 

times 9 (writes 9 into the lower outer field) [...] and here (points at the left inner field) we have one 

part, I mean, one x of 9, I mean, times x, I don’t know how to put it, say x from 9, and ...“ (He intended 

9-x and finally got to this. Highlights (italics) by RO) 

 

The use of a symbolic variable was thus triggered by the embodied action of pointing to a place and this brought 

up the use of a variable. Thus, at least in this case, referencing is deeply linked to using variables in a sensible 

way! 

 

Another (this time negative) example is based in the area of analytic geometry. Certain curricula define vectors 

geometrically as equivalence class of arrows of the same length and direction. As these objects (equivalence 

classes) are not so easy to construct mentally, many students pretend that the vectors defined by the arrows 

attached to parallel edges of a cube to be different. Thus, they often fail to setup adequate vector equations to 

solve problems, because of the inadequate referential system they have set up. 

 

A third example is given by the composition of functions, especially in the case of function and inverse 

function. As long as there is no reference to functions as objects, students hardly make sense of a recipe for 

finding the inverse function such as interchanging y and x and isolating. 

 

The conclusion here is that referential understanding is at least of some importance for the learning of math and 

the lack of referential understandings may be an obstacle. However, further research is needed to allow more 

specific statements. 

 

 

Conclusion 
 

To get access to the advantages of referential semantics students must construct mental objects to refer to. Thus, 

it is an important question of educational research how to foster the development of concepts. There are some 

important contributions in this direction: As mentioned above Sfard, Dubinsky, Tall and others have developed 

various theories of how objects arise from processes and Dörfler (2005) and others have looked into how 

inscriptions of mathematical symbols may actually be the mathematical objects that are dealt with.  These are 

important contributions that one can build on (see e.g. Oldenburg 2011) but still establishing a domain to be 

suitable for use as the domain of a referential logic theory is a lot of work: One must define (and create)  the 

objects and one must be able to decide identity of objects. This is a non-trivial task and students may fail to do 

cope with this. We think that further research if necessary to clarify how objects are created and to what extend 

this is a necessary precondition for understanding (or for particular forms of understanding). Especially the 

paper urges the math education community to rethink if Frege's semantics is an adequate foundation, especially 

if technology is used in the learning process. 
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