Latent Trajectories of Subjective Well-Being: An Application of Latent Growth Curve and Latent Class Growth Modeling

Abstract views: 112 / PDF downloads: 98




Dynamic process, Individual differences, Latent growth curve modeling, Latent growth classes, Measurement design


This study proposed a three-stage measurement model utilizing the Latent Growth Curve Modeling and Latent Class Growth Analysis. The measurement model was illustrated using repeated data collected through a four-week prospective study tracking the subjective well-being of volunteer college students (n=154). Firstly, several unconditional growth models were estimated to define the model providing a better representation of individual growth trajectories. Secondly, several conditional growth models were formulated to test the usefulness of covariate variables hypothesized to explain observed variance in growth factors. Finally, latent class models were estimated to explore different latent trajectory classes further. Results showed that students' subjective well-being changed over time, and the rate of this change, as well as its covariates, were not constant for the entire sample. This study clearly illustrates how a longitudinal measurement approach can enhance the scope of findings and the depth of inferences when repeated measurements are available.


Aili, K., Campbell, P., Michaleff, Z. A., Strauss, V. Y., Jordan, K. P., Bremander, A., Croft, P., Bergman, S. (2021). Long-term trajectories of chronic musculoskeletal pain: a 21-year prospective cohort latent class analysis. Pain, 162, 1511-1520.

Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332.

Askar, P., & Yurdugul, H. (2009). The using of Latent Growth Models for educational researches. Elementary Education Online, 8(2), 534-555.

Bakk, Z., & Kuha, J. (2020). Relating latent class membership to external variables: An overview. British Journal of Mathematical and Statistical Psychology, 74, 340-362.

Barboza, G. E. (2020). Child maltreatment, delinquent behavior, and school factors as predictors of depressive symptoms from adolescence to adulthood: a Growth Mixture Model. Youth & Society, 52(1), 27-54.

Berlin, K., Parra, G., & Williams, N. (2014). An introduction to Latent Variable Mixture Modeling (part 2): longitudinal Latent Class Growth Analysis and Growth Mixture Models. Journal of Pediatric Psychology, 39(2), 188-203.

Bilir, M. K., Binici, S., & Kamata, A. (2008). Growth Mixture Modeling: application to reading achievement data from a large-scale assessment. Measurement and Evaluation in Counseling and Development, 41(2), 104-119.

Bollen, K. A., & Curran, P. J. (2004). Autoregressive Latent Trajectory (ALT) models: a synthesis of two traditions. Sociological Methods & Research, 32(3), 336-383.

Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford.

Byrne, B. M., Lam, W. W., & Fielding, R. (2008). Measuring patterns of change in personality assessments: an annotated application of Latent Growth Curve Modeling. Journal of Personality Assessment, 90(6), 536-546.

Cole, D. A. (2012). Latent trait-state models. In R. H. (Ed.), Handbook of structural equation modeling (s. 585-600). Guilford.

Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design and statistical model. Annual Review of Psychology, 57, 505-528.

Collins, L. M., & Lanza, S. T. (2010). Latent Class and Latent Transition Analysis: with applications in the social, behavioral, and health sciences. John Wiley & Sons.

Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27(1), 131-157.

Connell, A. M., & Frye, A. A. (2006). Growth Mixture Modelling in developmental psychology: overview and demonstration of heterogeneity in developmental trajectories of adolescent antisocial behaviour. Infant and Child Development, 15(6), 609-621.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281-302.

Curran, P. J., & Willoughby, M. T. (2003). Implications of latent trajectory models for the study of developmental psychopathology. Development and Psychopathology, 15(3), 581-612.

Curran, P. J., & Wirth, R. J. (2004). Interindividual differences in intraindividual variation: balancing internal and external validity. Measurement ( Mahwah N J), 2(4), 219-247.

Diallo, T. M., Morin, A. J., & Lu, H. Z. (2017). The impact of total and partial inclusion or exclusion of active and inactive time invariant covariates in Growth Mixture Models. Psychological Methods, 22(1), 166-190.

Diener, E., Oishi, S., & Tay, L. (2018). Advances in subjective well-being research. Nature Human Behaviour, 2, 253-260.

Duncan, T. E., & Duncan, S. C. (2009). The ABC’s of LGM: an introductory guide to Latent Variable Growth Curve Modeling. Social Personality Psychology Compass, 3(6), 979-991.

Elahi Shirvan, M., Taherian, T., Shahnama, M., & Yazdanmehr, E. (2021). A longitudinal study of foreign language enjoyment and L2 grit: a Latent Growth Curve Modeling. Front. Psychol., 12.

Feingold, A. (2021). Effect of parameterization on statistical power and effect size estimation in Latent Growth Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 609-621.

Fernandez-Rio, J., Cecchini, J. A., Mendez-Gimenez, A., & Carriedo, A. (2021). Mental well-being profiles and physical activity in times of social isolation by the COVID-19: a latent class analysis. International Journal of Sport and Exercise Psychology.

Fukkink, R. G., & van Verseveld, M. (2020). Inclusive early childhood education and and care: a longitudinal study into the growth of interprofessional collaboration. Journal of Interprofessional Care, 34(3), 362-372.

Goswami, H., Fox, C., & Pollock, G. (2016). The current evidence base and future needs in ımproving children’s well-being across Europe: is there a case for a comparative longitudinal survey? Child Indicators Research, 9, 371-388.

Gottfried, A. E., Nylund-Gibson, K., Gottfried, A. W., Morovati, D., & Gonzalez, A. M. (2016). Trajectories from academic intrinsic motivation to need for cognition and educational attainment. The Journal of Educational Research, 110(6), 642-652.

Hertzog, C., & Nesselroade, J. R. (2003). Assessing psychological change in adulthood: an overview of methodological issues. Psychology and Aging, 18(4), 639-657.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.

Jung, T., & Wickrama, K. A. (2008). An introduction to Latent Class Growth Analysis and Growth Mixture Modeling. Social and Personality Psychology Compass, 2(1), 302-317.

Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of Educational Measurement, 50(1), 1-73.

Kim, Y., Kang, M., Tacon, A., & Morrow, J. (2016). Longitudinal trajectories of physical activity in women using Latent Class Growth Analysis: the WIN study. Journal of Sport and Health Science, 5(4), 410-416.

Lee, J. (2020). Trajectories of mental health across baby boomers: Latent Growth Curve Modeling for depression. Social Work in Mental Health, 18(1), 96-120.

Li, M., & Harring, J. R. (2017). Investigating approaches to estimating covariate effects in Growth Mixture Modeling: A simulation study. Educational and Psychological Measurement, 77(5), 766-791.

Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778.

Lorenz, F. O., Wickrama, K. A., & Conger, R. D. (2004). Modeling continuity and change in family relations with panel data. In R. D. Conger, F. O. Lorenz, & K. A. Wickrama, Continuity and change in family relations: Theory, methods, and empirical findings (s. 15-62). Erlbaum.

McLachlan, G., & Peel, D. (2000). Finite mixture modeling. Wiley.

Menard, S. (2008). Handbook of longitudinal research: Design, measurement, and analysis. Academic.

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107-122.

Muthén, B. (2007). Latent variables hybrids: Overview of old and new models. In G. R. Hancock, & K. M. Samuelsen, Advances in latent variable mixture models (s. 1-24). Information Age.

Muthén, B. O. (2002). Beyond SEM: General Latent Variable Modeling. Behaviormetrika, 29(1), 81-117.

Muthén, B. O., & Muthén, L. K. (2020, March). Chi-square difference testing using the Satorra–Bentler scaled chi-square.

Muthén, B., & Brown, H. C. (2009). Estimating drug effects in the presence of placebo response: causal inference using Growth Mixture Modeling. Statistics in Medicine, 28(27), 3363-3385.

Muthén, B., & Shedden, K. (1999). Finite Mixture Modeling with mixture outcomes using the EM algorithm. Biometrics, 55(2), 463-469.

Muthén, L. K., & Muthén, B. O. (1998-2012). Mplus user’s guide (7th Edition). Muthén & Muthén.

Nagin, D. (1999). Analyzing developmental trajectories: a semi-parametric, group-based approach. Psychological Methods, 4(2), 139-157.

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in Latent Class Analysis and Growth Mixture Modeling: a Monte Carlo Simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535-569.

Pierce, M., Mcmanus, S., Hope, H., Hotopf, M., Ford, T., Hatch, S. L., . . . Abel, K. M. (2021). Mental health responses to the COVID-19 pandemic: a latent class trajectory analysis using longitudinal UK data. Lancet Psychiatry, 8, 610-619.

Ployhart, R. E., & Vanderberg, R. J. (2010). Longitudinal research: the theory, design, and analysis of change. Journal of Management, 36(1), 94-120.

Ram, N., & Grimm, K. J. (2009). Growth Mixture Modeling: a method for identifying differences in longitudinal change among unobserved groups. International Journal of Behavioral Development, 33(6), 565-576.

Ruscio, J., & Ruscio, A. M. (2008). Categories and dimensions: advancing psychological science through the study of latent structure. Current Directions in Psychological Science, 17(3).

Schwarz, G. (1978). Estimating the dimension of a model. The Annuals of Statistics, 6(2), 461-464.

Sclove, L. S. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333-343.

Scott, P. W. (2021). Accounting for Time-Varying Inter-Individual Differences in Trajectories when Assessing Cross-Lagged Models. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 365-375.

Shi, S., DiStefano, C., Zheng, X., Liu, R., & Jiang, Z. (2021). Fitting latent growth models with small sample sizes and non-normal missing data. International Journal of Behavioral Development, 45(2), 179-192.

Tofighi, D., & Enders, C. (2007). Identifying the correct number of classes in a Growth Mixture Model. In G. R. Hancock, Mixture models in latent variable research (s. 317-341). Information Age.

Wang, M., & Bodner, T. E. (2007). Growth Mixture Modeling: identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10(4), 635-656.

Wickrama, K. A., Lorenz, F. O., & Conger, R. D. (1997). Parental support and adolescent physical health status: a Latent Growth-Curve Analysis. Journal of Health and Social Behavior, 38(2), 149-163.

Willett, J., & Sayer, A. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116(2), 363-381.




How to Cite

Sozer-Boz, E., & Kahraman, N. (2023). Latent Trajectories of Subjective Well-Being: An Application of Latent Growth Curve and Latent Class Growth Modeling . International Journal of Contemporary Educational Research, 10(2), 411–423.