Effect of Problem-Based STEM Activities on 7th Grade Students' Mathematics Achievements, Attitudes, Anxiety, Self-Efficacy and Views
Abstract views: 567 / PDF downloads: 194
DOI:
https://doi.org/10.33200/ijcer.1008456Keywords:
STEM, Self-efficacy towards mathematics, 21st Century skills, Mathematics achievement, Problem-Based STEM activities and interestAbstract
This study investigates the effect of problem-based STEM (Science, Technology, Engineering, Mathematics) activities on 7th-grade students’ mathematics achievement, attitude, anxiety, self-efficacy, interest, and views. At the same time, the effects of these activities on students' anxiety, self-efficacy towards mathematics, and interest in STEM occupations were also examined. The study sample, which was selected using the convenience sampling method, consisted of 115 7th grade students of a public middle school in Turkey. In the quantitative phase of the research, a quasi-experimental research model with pre-test and post-test control group was used to determine the students’ mathematics achievement, attitudes, anxiety, self-efficacy towards mathematics and interests in STEM careers. In the qualitative phase semi-structured interview was used to understand students’ views on problem-based STEM activities and mathematics lessons in the qualitative part. Within the scope of the research, 6 different problem-based STEM activities related to ratio-proportion and percentages were applied to the experimental group students. The data collected from both groups before and after the implementation process were analyzed with descriptive statistics, independent samples t-test, and paired sample t-test. The results showed that problem-based STEM activities affect students’ mathematics achievement, self-efficacy, and interest in mathematics. It also helps students reducing their mathematics anxiety.
References
• Afriana, J., Permanasari, A. & Fitriani, A. (2016). Project Based Learning Integrated to Stem to Enhance Elementary School's Students Scientific Literacy. Jurnal Pendidikan IPA Indonesia, 5(2), 261-267.
• Aiken, L.R. (1974). Two scales of attitude toward mathematics. Journal for Research in Mathematics Education, 5(2), 67-71.
• Akdağ, F. T. (2017). STEM Uygulamalarının Öğrencilerin Akademik Başarı, Bilimsel Süreç ve Yaşam Becerileri Üzerine Etkisi [Effect of STEM applications on academic achievement, scientific process and life skills]. Unpublished Doctoral Dissertation, Samsun: Ondokuz Mayıs University.
• Alıcı, M. (2018). Probleme dayalı öğrenme ortamında STEM eğitiminin tutum, kariyer algı ve meslek ilgisine etkisi ve öğrenci görüşleri [Effect of STEM applications on academic achievement, scientific process and life skills]. Unpublished Master Thesis, Kırıkkale: Kırıkkale University.
• Aydagül, B. & Terzioğlu, T. (2014). Bilim, teknoloji, mühendislik ve matematiğin önemi. [Importance of science, technology, engineering and mathematics]. TÜSİAD Görüş Dergisi, 85, 13-19.
• Aydın, G., Saka, M. & Guzey, S. (2017). 4-8. sınıf öğrencilerinin fen, teknoloji, mühendislik, matematik (STEM=FETEMM) tutumlarının incelenmesi [Science, Technology, Engineering, Mathematic (STEM) Attitude Levels In Grades 4th - 8th]. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 13(2), 787-802.
• Ayotola, A. & Adedeji, T. (2009). The relationship between mathematics self-efficacy and achievement in mathematics. Procedia-Social and Behavioral Sciences, 1(1), 953-957.
• Balbağ. M. Z. & Yenilmez. K. (2016). Fen bilgisi ve ilköğretim matematik öğretmeni adaylarının STEM’e yönelik tutumları [The STEM attitudes of prospective science and middle school mathematics teachers]. Eğitim ve Öğretim Araştırmaları Dergisi. 5(4), 301-307.
• Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-21.
• Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of Social and Clinical Psychology, 4(3), 359-373.
• Bandura, A. (Ed.). (1995). Self-efficacy in changing societies. Cambridge University Press.
• Ben-Chaim, D., Fey, J. T., Fitzgerald, W. M., Benedetto, C. & Miller, J. (1998). Proportional reasoning among 7th-grade students with different curricular experiences. Educational Studies in Mathematics, 36(3), 247-273.
• Benešová, A. & Tupa, J. (2017). Requirements for Education and Qualification of People in Industry 4.0. Procedia Manufacturing 11. 2195-2202.
• Bindak, R. (2005). İlköğretim Öğrencileri İçin Matematik Kaygı Ölçeği. F. Ü. Fen ve Mühendislik Bilimleri Dergisi, 17(2), 442-448.
• Büyüköztürk, Ş., Çakmak, E., Akgün, Ö., Karadeniz, Ş. ve Demirel, F. (2013). Bilimsel Araştırma Yöntemleri [Scientific Research Methods]. Ankara: Pegem Akademi Yayınları.
• Bybee, R. W. (2010). The teaching of science: 21st-century perspectives. NSTA Press.
• Çorlu, M. S., Capraro, R. M. & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. Eğitim ve Bilim, 39(171).
• Çorlu, M. S. & Çallı, E. (2017). STEM Kuram ve Uygulamalarıyla Fen, Teknoloji, Mühendislik ve Matematik Eğitimi, Öğretmenler İçin Temel Kılavuz [Science, Technology, Engineering and Mathematics Education with STEM Theories and Practices, Basic Guide for Teachers]. İstanbul: Pusula Yayıncılık.
• Degenhart, S. H., Wingenbach, G. J., Dooley, K. E., Lindner, J. R., Mowen, D. L. & Johnson, L. (2007). Middle school students' attitudes toward pursuing careers in science, technology, engineering, and math. NACTA Journal, 52-59.
• Delen. İ. & Uzun. S. (2018). Matematik öğretmen adaylarının FeTeMM temelli tasarladıkları öğrenme ortamlarının değerlendirilmesi [Evaluating STEM Based Learning Environments Created by Mathematics Pre-Service Teachers]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(3), 617-630.
• Doğanay, K. (2018). Probleme Dayalı STEM Etkinlikleriyle Gerçekleştirilen Bilim Fuarlarının Ortaokul Öğrencilerinin Fen Bilimleri Dersi Akademik Başarılarına ve Fen Tutumlarına Etkisi [The effect of science festivals upon with problem based stem activities on the student's science attitudes and academic achievements]. Unpublished Master Thesis, Kastamonu: Kastamonu University.
• Dreger, R. M. & Aiken, L. R. (1957). The identification of number anxiety in a college population. Journal of Educational Psychology, 48, 344-351.
• Duatepe, A., Akkuş-Çıkla, O. & Kayhan, M. (2005). Orantısal akıl yürütme gerektiren sorularda öğrencilerin kullandıkları çözüm stratejilerinin soru türlerine göre değişiminin incelenmesi [An investigation on students’ solution strategies for different proportional reasoning items]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(1), 73- 81.
• Elçi, A. N. (2008). Öğrenme stillerine uygun olarak seçilen öğrenme yöntemlerinin öğrencinin başarısına, matematiğe yönelik tutumuna ve kaygısına etkileri [The effects of learning methods chosen in accordance to the learning styles on the achievements of the student,on his attitudes and his anxiety towards mathematics]. Unpublished Doctoral Dissertation, İzmir: Dokuz Eylül University.
• Eser, E. (2014). Küreselleşme süreci ve eğitime etkisi [Globalization Process and Its Effects on Education]. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 2(2), 211-224.
• Fraenkel, J., R., & Wallen, N., E. (2010). How to design and evaluate research in education. (7th ed.). McGraw-Hill, New York: NY.
• George, D. & Mallery, M. (2010). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 update (10a ed.) Boston: Pearson.
• Gökbayrak, S. & Karışan, D. (2017b). Altıncı Sınıf Öğrencilerinin FeTeMM Temelli Etkinlikler Hakkındaki Görüşlerinin İncelenmesi [Exploration of Sixth Grade Students’ Views on STEMM Based Activities]. Alan Eğitimi Araştırmaları Dergisi (ALEG) 3(1), 25-40.
• Gravetter, F. & Wallnau, L. (2014). Essentials of Statistics for the Behavioral Sciences (8thed.). Belmont, CA: Wadsworth.
• Hacıömeroğlu, G. (2017). Matematiğe yönelik tutum ölçeği kısa formunun geçerlik ve güvenirlik çalışması [Reliability and Validity Study of the Attitude towards Mathematics Instruments Short Form]. Journal of Computer and Education Research, 5(9), 84-99.
• Hackett, G. & Betz, N. E. (1989). An exploration of the mathematics self-efficacy/mathematics performance correspondence. Journal for Research in Mathematics Education, 261-273.
• Haladyna, T., Shaughnessy, J. & Shaughnessy, J. M. (1983). A causal analysis of attitude toward mathematics. Journal for Research in Mathematics Education, 19-29.
• Hefty, L. J. (2015). STEM Gives Meaning to Mathematics. Teaching Children Mathematics, 21(7), 422-429.
• Hembree, R. (1990). The nature, effects, relief of mathematics anxiety. Journal for Research in Mathematics Education, 1, 33–46.
• Hossain, M. & Robinson, M. (2012). How to motivate US students to pursue STEM careers. US-China Education Review A, 2, 442–451.
• IEA. (2015). TIMSS 2015 International Results in Mathematics. Retrieved August 20, 2018, from http://timss2015.org/timss-2015/mathematics/student-achievement/
• Işıksal, M. & Aşkar, P. (2003). İlköğretim Öğrencileri İçin Matematik ve Bilgisayar Öz-Yeterlik Algısı Ölçekleri [The Scales of Perceived Mathematics and Computer Self-Efficacy for Elementary Students]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25, 109-118.
• James, J. S. (2014). Science, technology, engineering, and mathematics (STEM) curriculum and seventh-grade mathematics and science achievement. Retrieved October 11, 2018 from https://search.proquest.com/docview/1520011923?accountid=13014/
• James, J. S. (2014). Science, technology, engineering, and mathematics (STEM) curriculum and seventh-grade mathematics and science achievement. Retrieved October 11, 2018 from https://search.proquest.com/docview/1520011923?accountid=13014/
• Kalın, G. (2010). İlköğretim Öğrencilerinin Matematik Tutumları, Öz yeterlikleri, Kaygıları ve Dersteki Başarılarının İncelenmesi [The examination of Elementary Studets’ Mathematics Attitudes, Self Efficiancy, Anxiety and Achievement]. Unpublished Master Thesis, Ankara: Başkent University.
• Karjanto, N. & Yong, S. T. (2013). Test anxiety in mathematics among early undergraduate students in a British university in Malaysia. European Journal of Engineering Education, 38(1), 11-37.
• Kennedy, T. J. & Odell, M. R. L. (2014). Engaging Students in STEM Education. Science Education International, 25(3), 246-258.
• Keşan, C. & Kaya, D. (2018). Mathematics and Science Self-Efficacy Resources as the Predictor of Academic Success. International Online Journal of Educational Sciences, 10(2), 45-58.
• Kier, M. W., Blanchard, M. R., Osborne, J. W. & Albert, J. L. (2014). The development of the STEM career interest survey (STEM-CIS). Research in Science Education, 44(3), 461-481.
• Koyunlu Ünlü, Z., Dökme, İ. ve Ünlü, V. (2016). Adaptation of the science, technology, engineering, and mathematics career interest survey (STEM-CIS) into Turkish. Eurasian Journal of Educational Research, 63, 21-36.
• Kurbanoğlu, N. İ. & Takunyacı, M. (2012). Lise öğrencilerinin matematik dersine yönelik kaygı, tutum ve özyeterlik inançları bazı değişkenlere göre incelenmesi [An investigation of the attitudes, anxieties and self-efficacy beliefs towards mathematics lessons high school students’ in terms of gender, types of school, and students’ grades]. Uluslararası İnsan Bilimleri Dergisi, 9(1), 110-130.
• Lent, R.W., Lopez, F.G. & Bieschke, K.J. (1991). Mathematics self-efficacy: Sources and relation to science-based career choice. Journal of Counselling Psychology, 38, 424-430.
• Lim, S. Y. & Chapman, O. (2013). Development of a short form of the attitudes toward mathematics inventory. Educational Studies in Mathematics, 82, 145-164.Luo, X., Wang, F. & Luo, Z. (2009). Investigation and analysis of mathematics anxiety in middle school students. Journal of Mathematics Education, 2(2), 12-19.
• Luo, X., Wang, F. & Luo, Z. (2009). Investigation and analysis of mathematics anxiety in middle school students. Journal of mathematics Education, 2(2), 12-19.
• McBride, J. & Silverman, F.L. (1991). Integrating elementary/middle school science and mathematics. School Science and Mathematics, 91, 285-292.
• McClain, M. L. (2015). The effect of STEM education on mathematics achievement of fourth-grade underrepresented minority students. Retrieved November 11, 2018 from https://search.proquest.com/docview/1728919094?accountid=13014/
• McDonald, C. V. (2016). STEM Education: A review of the contribution of the disciplines of STEM. Science Education International, 27(4), 530-569.
• Mohamed, L. & Waheed, H. (2011). Secondary students’ attitude towards mathematics in a selected school of Maldives. International Journal of Humanities and Social Science, 1(15), 277-281.
• Mohr‐Schroeder, M. J., Jackson, C., Miller, M., Walcott, B., Little, D. L., Speler, L. & Schroeder, D. C. (2014). Developing Middle School Students' Interests in STEM via Summer Learning Experiences: See Blue STEM Camp. School Science and Mathematics, 114(6), 291-301.
• MoNE. (2016). STEM Education Report. Retrieved from http://yegitek.meb.gov.tr/STEM_Egitimi_Raporu.pdf on July 26, 2018
• MoNE. (2017). STEM Education Teacher's Handbook. Retrieved from http://scientix.meb.gov.tr/images/upload/Event_35/Gallery/STEM%20E%C4%9Fitimi%20%C3%96%C4%9Fretmen%20El%20Kitab%C4%B1.pdf on July 26, 2018
• MoNE. (2018b). Mathematics Curriculum. Ankara.
• Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2004). SPSS for introductory statistics: Use and interpretation. Psychology Press.
• National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA.: The Council.
• Obama, B. (2009, November 23). Remarks by the president on the “Education to Innovate” Campaign. Retrieved July 22, 2018 from https://obamawhitehouse.archives.gov/photos-and-video/video/president-obama-kicks-educate-innovate#transcript/
• Öztürk, Y. A. & Şahin, Ç. (2015). Matematiğe ilişkin akademik başarı-özyeterlilik ve tutum arasındaki ilişkilerin belirlenmesi [Determining the Relationships between Academic Achievement, Self-Efficacy and Attitudes Towards Maths]. International Journal of Social Science, 31, 343-366.
• Pajares, F. & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193.
• Ramaley, J. A. (2007). Facilitating change: Experience with the reform of STEM Education. Retrieved January 19, 2019 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 526.8592&rep=rep1&type=pdf./ Randolph, T. (1998). An assessment of mathematics anxiety in students from grades four through eight. Cambridge, MA: Cambridge Information Group.
• Rogers, C. & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: Innovations & Research, 5.
• Sanders, M. (2009) STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.
• Şahin, A., Ayar, M. C. & Adıgüzel, T. (2014). STEM Related After-School Program Activities and Associated Outcomes on Student Learning. Educational Sciences: Theory and Practice, 14(1), 309-322.
• Tapia, M. & Marsh, G. E., II. (2004). An instrument to measure mathematics attitudes. Academic Exchange Quarterly, 8(2), 16-21.
• TÜSİAD. (2014). STEM alanında eğitim almış işgücüne yönelik talep ve beklentiler araştırması [Demand and expectations research for the workforce trained in STEM]. Retrieved March 2, 2019 from https://tusiad.org/tr/yayinlar/raporlar/item/download/7014_d28ffa2adda423c6d3852cc01c965993/
• TÜSİAD. (2017). 2023’e Doğru Türkiye’de STEM Gereksinimi [STEM requirements towards 2023 in Turkey]. Retrieved March 2, 2019 from https://www.tusiadstem.org/images/raporlar/2017/STEM-Raporu-V7.pdf/
• Umay, A (2001). İlköğretim Matematik Öğretmenliği Programının Matematiğe Karşı Özyeterlik Algısına Etkisi [The Effect of The Primary School Mathematics Teaching Program on the Mathematics Self-Efficacy of Students]. Journal of Qafqaz University,8 Fall, Bakü, Azerbaycan.
• Vilorio, D. (2014). STEM 101: Intro to tomorrow’s jobs. Occupational Outlook Quarterly, 58(1), 2-12.
• Wigfield, A. & Meece, J. L. (1988). Math anxiety in elementary and secondary school students. Journal of Educational Psychology, 80(2), 210.
• Windschitl, M. (2009). Cultivating 21st Century Skills in Science Learners: How Systems of Teacher Preparation and Professional Development Will Have to Evolve. Paper commissioned by National Academy of Science’s Committee on The Development of 21st Century Skills. Washington, DC.
• Wyss, V. L., Heulskamp, D. & Siebert, C. J. (2012). Increasing middle school student interest in STEM careers with videos of scientists. International journal of environmental and science education, 7(4), 501-522.
• Yamak, H., Bulut, N. & Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile Fen’e karşı tutumlarına FeTeMM etkinliklerinin etkisi [The Impact of STEM Activities on 5th Grade Students’ Scientific Process Skills and Their Attitudes Towards Science]. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 34(2), 249-265.
• Yıldırım, B. (2013b). Amerika, AB Ülkeleri ve Türkiye’de STEM Eğitimi [STEM Education in US, EU Countries and Turkey.]. 22. Ulusal Eğitim Bilimleri Kongresi. Eskişehir: Osmangazi Üniversitesi.
• Yıldız, A. (2018). Endüstri 4.0 ve Akıllı Fabrikalar [Industry 4.0 and Smart Factories]. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 546-556.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Yavuz MACUN, Cemalettin IŞIK
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.