Adaptation of Maker-Based Technological Pedagogical Content Knowledge Scale (Maker-TPACK) to Turkish for pre-service science teachers

Maker-based TPACK


Abstract views: 133 / PDF downloads: 104

Authors

DOI:

https://doi.org/10.52380/ijcer.2023.10.4.455

Keywords:

Technological pedagogical content knowledge, Maker movement, Digital production tools, Pre-service teachers, Scale adaptation.

Abstract

The aim of the study is to adapt the “Maker-Based Technological Pedagogical Content Knowledge” scale developed by Ku, Loh, Lin, and Williams (2021) for pre-service science teachers into Turkish. The study group of the research consists of 188 pre-service science teachers studying at the Department of Science Education at three state universities in Istanbul. This study was carried out using exploratory sequential design, one of the mixed method typologies.  As a result of confirmatory factor analyses, it was seen that the scale, which was adapted into Turkish, consisted of 7 sub-dimensions and 27 items, as in the original. These 7 sub-dimensions consist of Content Knowledge, Pedagogical Knowledge, Technological Knowledge, Pedagogical Content Knowledge, Technological Content Knowledge, Technological Pedagogical Knowledge and Technological Pedagogical Content Knowledge. The Cronbach Alpha Reliability Coefficient of the scale is .948. 

Author Biography

Behiye Akçay, Istanbul University-Cerrahpasa

Hasan Ali Yücel Eğitim Fakültesi

Department of Science Education

References

Akçay, B., & Avcı, F. (2022). Development of the STEM-Pedagogical Content Knowledge Scale for pre-service teachers: Validity and reliability study. Journal of Science Learning, 5(1), 79-90. DOI: https://doi.org/10.17509/jsl.v5i1.36293

Akman, Ö., & Güven, C. (2015). TPACK survey development study for social sciences teachers and teacher candidates. International Journal of Research in Education and Science, 1(1), 1-10. DOI: https://doi.org/10.21890/ijres.97007

Alpaslan, M. M., Ulubey, O., & Ata, R. (2021). Adaptation of Technological Pedagogical Content Knowledge Scale into Turkish culture within the scope of 21st century skills. Psycho Educational Research Reviews, 1(1), 77-91.

Anderson, C. (2012). Makers: The new industrial revolution. New York: Random House.

Baran, E., & Canbazoğlu Bilici, S. (2015). Teknolojik Pedagojik Alan Bilgisi (TPAB) üzerine alanyazın incelemesi: Türkiye örneği. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(1), 15-32.

Berry, R. Q., Bull, G., Browning, C., Thomas, C. D., Starkweather, G., & Aylor, J. (2010). Use of digital fabrication to incorporate engineering design principles in elementary mathematics education. Contemporary Issues in Technology and Teacher Education, 10(2), 167-172.

Bilici, S., & Güler, Ç. (2016). Ortaöğretim öğretmenlerinin TPAB düzeylerinin öğretim teknolojilerini kullanma durumlarına göre incelenmesi. Ilkogretim Online, 15(3), 898-921. DOI: https://doi.org/10.17051/io.2016.05210

Blikstein, P. (2013). Digital fabrication and ‘making’ in education: The democratization of invention. FabLabs: of machines. In J. Walter-Herrmann & C. Büching (Eds.), FabLabs: Of Machines, Makers and Inventors. Bielefeld: Transcript Publishers. DOI: https://doi.org/10.14361/transcript.9783839423820.203

Brown, T. A. (2006). Confirmatory factor analysis for applied research. NY: Guilford Publications.

Canbazoğlu Bilici, S., Yamak, H., Kavak, N., & Guzey, S.S. (2013). Technological Pedagogical Content Knowledge Self-efficacy Scale (TPACK-SeS) for preservice science teachers: Construction, validation and reliability. Eurasian Journal of Educational Research, 52, 37-60.

Chan, M. M., & Blikstein, P. (2018). Exploring problem-based learning for middle school design and engineering education in digital fabrication laboratories. Interdisciplinary Journal of Problem-Based Learning, 12(2), 2-13. DOI: https://doi.org/10.7771/1541-5015.1746

Çetin, İ., & Erdoğan, A. (2018). Development, validity and reliability study of technological pedagogical content knowledge (TPACK) efficiency scale for mathematics teacher candidates. International Journal of Contemporary Educational Research, 5(1), 50-62.

Creswell, J. W., & Plano Clark, V. L. (2007). Karma yöntem araştırmaları tasarımı ve yürütülmesi. (Çev. Y. Dede & S.B. Demir). Ankara: Anı Yayıncılık. (Orijinal yayın tarihi, 2011).

Gözüm, S., & Aksayan, S. (2013). Kültürlerarası ölçek uyarlaması için rehber II: Psikometrik özellikler ve kültürlerarası karşılaştırma. Hemşirelikte Araştırma Geliştirme Dergisi, 1, 3- 4.

Harris, J., Mishra, P., & Koehler, M. (2009). Teachers' technological pedagogical content knowledge and learning activity types: Curriculum-based technology integration reframed. Journal of Research on Technology in Education, 41(4), 393–416. DOI: https://doi.org/10.1080/15391523.2009.10782536

Hambleton, R.K., & Patsula, L. (1999). Increasing the validity of adapted tests: myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology, 1(1), 1-13.

Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6 (1), 1–55. DOI: https://doi.org/10.1080/10705519909540118

Jang, S. J., & Tsai, M. F. (2012). Exploring the TPACK of Taiwanese elementary mathematics and science teachers with respect to use of interactive whiteboards. Computers & Education, 59(2), 327–338. DOI: https://doi.org/10.1016/j.compedu.2012.02.003

Jen, T. H., Yeh, Y. F., Hsu, Y. S., Wu, H. K., & Chen, K. M. (2016). Science teachers’ TPACK-Practical: Standard setting using an evidence-based approach. Computers & Education, 95, 45–62. DOI: https://doi.org/10.1016/j.compedu.2015.12.009

Jwaifell, M. (2019). In-service science teachers' readiness of integrating augmented reality. Journal of Curriculum and Teaching, 8(2), 43-53. DOI: https://doi.org/10.5430/jct.v8n2p43

Kadıoğlu-Akbulut, C., Çetin-Dindar, A., Küçük, S., & Acar-Şeşen, B. (2020). Development and validation of the ICT-TPACK-science scale. Journal of Science Education and Technology, 29(3), 355-368. DOI: https://doi.org/10.1007/s10956-020-09821-z

Kaleli Yılmaz, G. (2015). Türkiye'deki teknolojik pedagojik alan bilgisi çalışmalarının analizi: Bir meta-sentez çalışması. Eğitim ve Bilim, 40(178), 103-122. DOI: https://doi.org/10.15390/EB.2015.4087

Kaya, Z., Kaya, O. N., & Emre, İ. (2013). Teknolojik Pedagojik Alan Bilgisi (TPAB) ölçeği’nin Türkçeye uyarlanması. Kuram ve Uygulamada Eğitim Bilimleri, 13(4), 2355-2377. DOI: https://doi.org/10.12738/estp.2013.4.1913

Kiray, S. A. (2016). Development of a TPACK self-efficacy scale for preservice science teachers. International Journal of Research in Education and Science, 2(2), 527-541. DOI: https://doi.org/10.21890/ijres.64750

Kline, R. B. (2005). Methodology in the social sciences. Principles and practice of structural equation modeling. New York: Guilford Press.

Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? Contemporary Issues in Technology and Teacher Education, 9(1), 60-70.

Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Computers & Education, 49(3), 740-762. DOI: https://doi.org/10.1016/j.compedu.2005.11.012

Koehler, M. J., Mishra, P., & Cain, W. (2013). What is technological pedagogical content knowledge (TPACK)? Journal of Education, 193(3), 13-19. DOI: https://doi.org/10.1177/002205741319300303

Ku, C-J., Loh, W.L.L., Lin, K., & Williams, P.J. (2021). Development of an instrument for exploring preservice technology teachers’ maker-based technological pedagogical content knowledge. British Journal of Educational Technology, 52(2), 552-568. DOI: https://doi.org/10.1111/bjet.13039

Lang, D. (2017). Zero to maker: A Beginner's guide to the skills, tools, and ideas of the maker movement. San Francisco: Maker Media Inc.

Leinonen, T., Virnes, M., Hietala, I., & Brinck, J. (2020). 3D printing in the wild: adopting digital fabrication in elementary school education. International Journal of Art & Design Education, 39(3), 600-615. DOI: https://doi.org/10.1111/jade.12310

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99 DOI: https://doi.org/10.1037/1082-989X.4.1.84

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teacher knowledge. Teachers College Record, 108, 1017–1054. DOI: https://doi.org/10.1111/j.1467-9620.2006.00684.x

Mishra, P., & Koehler, M. J. (2008). Introducing technological pedagogical content knowledge (Paper Presentation). Annual Meeting of the American Educational Re-search Association, New York City, USA.

Moro, M., Alimisis, D., & Iocchi, L. (Eds.). (2020). Educational robotics in the context of the maker movement. Warsaw, Poland: Springer. DOI: https://doi.org/10.1007/978-3-030-18141-3

Öztürk, G., Karamete, A., & Çetin, G. (2020). The relationship between pre-service teachers’ cognitive flexibility levels and techno-pedagogical education competencies. International Journal of Contemporary Educational Research, 7(1), 40-53 DOI: https://doi.org/10.33200/ijcer.623668

Schad, M., & Jones, W. M. (2019). The maker movement and education: A systematic review of the literature. Journal of Research on Technology in Education, 52(1), 65-78. DOI: https://doi.org/10.1080/15391523.2019.1688739

Schon, S., Ebner, M., & Kumar, S. (2014). The Maker Movement Implications from modern fabrication, new digital gadgets, and hacking for creative learning and teaching. eLearning Papers, Special Issue 2014, 86-100.

Seçer, İ. (2013). SPSS ve LISREL ile pratik veri analizi: Analiz ve raporlaştırma. Ankara: Anı yayıncılık.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14. DOI: https://doi.org/10.3102/0013189X015002004

Smith, R. C., Iversen, O. S., & Hjorth, M. (2015). Design thinking for digital fabrication in education. International Journal of Child-Computer Interaction, 5, 20-28. DOI: https://doi.org/10.1016/j.ijcci.2015.10.002

Şahin, N. (1994). Using scale in psychology research. Türk Psikoloji Dergisi, 9(33), 19-26.

Şeker, H. & Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme. Ankara: Nobel Akademi

Wu, Y. T. (2013). Research trends in technological pedagogical content knowledge (TPACK) research: A review of empirical studies published in selected journals from 2002 to 2011. British Journal of Educational Technology, 44(3), 73-76. DOI: https://doi.org/10.1111/j.1467-8535.2012.01349.x

Yanış, H. & Yürük, N. (2021) Development, validity, and reliability of an educational robotics based technological pedagogical content knowledge self-efficacy scale. Journal of Research on Technology in Education, 53(4), 375-403. DOI: https://doi.org/10.1080/15391523.2020.1784065

Yanpar Yelken, T., Sancar Tokmak, H., Özgelen, S., & İncikabı, L. (2013). Fen ve matematik eğitiminde teknolojik pedagojik alan bilgisi temelli öğretim tasarımları. Ankara: Anı Yayıncılık.

Yaşlıoğlu, M.M. (2017). Sosyal bilimlerde faktör analizi ve geçerlilik: Keşfedici ve doğrulayıcı faktör analizlerinin kullanılması. Istanbul University Journal of the School of Business, 46, 74-85.

Yurdakul, I. K., Odabasi, H. F., Kilicer, K., Coklar, A. N., Birinci, G., & Kurt, A. A. (2012). The development, validity and reliability of TPACK-deep: A technological pedagogical content knowledge scale. Computers & Education, 58(3), 964-977. DOI: https://doi.org/10.1016/j.compedu.2011.10.012

Downloads

Published

28.12.2023

How to Cite

Akçay, B., Aslangiray, H., Özyalçın, B., & Keleş, F. (2023). Adaptation of Maker-Based Technological Pedagogical Content Knowledge Scale (Maker-TPACK) to Turkish for pre-service science teachers: Maker-based TPACK. International Journal of Contemporary Educational Research, 10(4), 1011–1024. https://doi.org/10.52380/ijcer.2023.10.4.455

Issue

Section

Articles